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Coupled modes in parallel pillar microcavities: theory
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Abstract. The photonic modes of two identical, parallel microcavities are studied as a function of various
parameters controlling the strength of the interaction between the isolated cavities. Coupling between the
modes, which is determined by the overlap between the decaying e.m. field produced by one cavity in the
region occupied by the second one, removes the degeneracy between the fundamental modes of the isolated
structures. The energy splitting is found to depend strongly on the radius of the cavities, their distance,
and the refractive index contrast between the core and the external medium.

PACS. 42.25.Bs Wave propagation, transmission and absorption – 77.55.+f Dielectric thin films –
78.20.Bh Theory, models, and numerical simulation

1 Introduction

It is well-known that the radiative properties of a material
system are not an intrinsic and immutable characteristic
of the electronic states of the emitter, but depend also on
the electromagnetic (e.m.) field distribution and density of
states at the emitter position. An extensive experimental
and theoretical work has been developed in the last few
years demonstrating the possibility to control the spon-
taneous and stimulated emission at optical frequencies by
tailoring the photon states inside planar semiconductor
microcavities (MCs) [1].

A further control of the emission properties has been
achieved recently with the fabrication of laterally pat-
terned semiconductor MCs. In these structures discretiza-
tion of the spectrum of the optical modes in all three
dimensions is achieved by combining vertical optical con-
finement by the distributed Bragg reflectors (DBRs) with
the lateral optical confinement provided by the large re-
fractive index contrast at the etched sidewalls. The cavity
modes have been experimentally and theoretically studied
both in photonic dots with rectangular cross section [2]
and in pillar MCs (PMCs) [3]. Moreover, both the weak
coupling regime [4,5], which manifests itself with a con-
siderable increase of the spontaneous emission rate of the
material system, and the formation of cavity polaritons in
the strong coupling regime [6,7] have been demonstrated.

Interesting phenomena may also arise due to the co-
herent interactions between two cavities. This topic, which
has been extensively studied by several groups in arrays
of vertical-cavity surface emitting lasers [8], is a subject
of both fundamental and practical interest: it provides an
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illustration of coherent interaction in semiconductor sys-
tems, as well as a means of transfer of e.m. power from
one cavity to another. It has been shown [9] that coupling
of the photon modes of two MCs with rectangular cross
section via a narrow channel results in a splitting of the
modes whose magnitude depends on the strength of the
interaction, i.e. on the length and width of the channel.

Coherent interactions arise also if the two cavities are
not connected through a channel, due to the leakage of
the confined modes of the individual cavities in the sur-
rounding material. In fact modes inside laterally patterned
planar MCs are characterized by an amplitude in the ex-
ternal medium which, although rapidly decaying in the
radial direction, does not vanish. The degree of leakage
in the external region depends obviously on the mode, on
the in-plane dimensions of the cavity, and on the indices
of refraction of the core and of the cladding regions. If a
second identical parallel cavity (MC B) is considered at a
distance from the first one (MC A) where the amplitude
of its decaying e.m. field is still appreciable, the guided
modes of B are superimposed to the decaying modes pro-
duced by A in the core region of B, and vice versa. This
is the source of the coupling between the cavities and of
the splitting between otherwise degenerate modes.

The aim of this work is to study the coherent interac-
tion between two PMCs, which is provided by the evanes-
cent behavior of the fields in the cladding region. The
splitting between the degenerate fundamental modes of
the individual cavities is found to depend strongly on the
radius of the PMCs, on their distance, and on the degree of
confinement of the modes in the core region via the refrac-
tive index contrast between the internal and the external
medium.
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Fig. 1. (a) Schematic plot of a PMC. εeff (εext) is the dielectric function of the core (cladding) region. (b) Cross section of a
PMC; the Cartesian and cylindrical coordinate systems are also displayed.

2 Model and formalism

2.1 Single cavity

A schematic representation of the structure and of its cross
section is given in Figure 1, together with the employed
Cartesian and cylindrical coordinate system.

The core region is formed by a central semiconductor
layer with a circular cross section of radius a, extending
between two highly reflecting DBRs which confine radia-
tion in the vertical (z) direction. The dielectric constant
of the external region εext is assumed to be smaller than
that of the core in order for confined optical modes to ex-
ist inside the PMC. Penetration of the fields in the DBRs
is accounted for by evaluating the effective length of the
cavity Leff and the effective dielectric constant of the core
region εeff , a task which is easily performed analytically
once the thicknesses and indices of refraction of each layer
are known [11].

As further discussed in the following, the coherent
interaction between the two cavities produces coupled
modes with a splitting which is at most of a few meV;
thus the effect can be detected only if the quality factor
of the cavity is ≥ 500. At present this result has been
achieved only with GaAs PMCs having radii ≥ 0.3µm,
since at smaller radii scattering by the roughness at the
sidewalls considerably reduces the photon lifetime. It can
be shown that at these radii -which is also the case investi-
gated in the present work- vertical confinement of the pho-
ton modes dominates over lateral dielectric confinement,
and the fields may be written as the product between two
terms depending only on the longitudinal (z) or on the
transverse (ρ, Φ) coordinates, respectively.

The mode energies are evaluated according to a self-
consistent procedure which is extensively discussed in ref-
erence [10]. This method provides two sets of discrete EH
and HE modes for the PMC, a nomenclature which is rem-
iniscent of that usually employed for cylindrical waveg-
uides [12]. For a fixed polarization α (α = EH, HE) the
frequency of the mode ω(α)

ln is labelled by two quantum
numbers (l, n): l = 0,±1,±2... is the z component of the
total angular momentum, and n = 1, 2, 3... denotes the
successive roots of the characteristic equation for a fixed

azimuthal quantum number l and polarization α. Modes
with total angular momentum l and −l are degenerate and
correspond to fields with positive and negative sense of
rotation about the z axis, respectively. The field e(α)

ln cor-
responding to the eigenfrequency ω(α)

ln is characterized in
general by a non-vanishing value of all three linearly polar-
ized components; however, either the positive or the nega-
tive circular component dominates the observable in-plane
intensity distribution of the mode, and is much stronger
also than the longitudinal one. Only for EH0n and HE0n

modes the two circular components have the same weight,
and the corresponding fields have a pure TE and TM po-
larization respectively [10,12].

In this paper we will consider only the HE11 and HE−11

modes, which are the fundamental ones in PMCs, and
which are well-separated in energy from all other HEln and
EHln modes inside the structure for all radii considered in
this work. The normalized electric field profile of these
modes is approximately given by (upper sign: l = 1, lower
sign: l = −1):
Core region

ẽ(r, t) = e(ρ)f(z)e−iωmt

≈ 1√
2π

1
N
J0(βmρ)f(z)e−iωmt û±; (1)

Cladding region

ẽ(r, t) = e(ρ)f(z)e−iωmt

≈ 1√
2π

1
N

(
βma

qma

J1(βma)
K1(qma)

)
K0(qmρ)f(z)e−iωmt û±. (2)

In the preceding expressions the quantum numbers l =
±1, n = 1 and the polarization index α = HE are under-
stood; moreover ωm = ω

(HE)
11 . û± are the rotating unit

vectors, which are expressed in terms of the Cartesian
(x̂, ŷ) and polar (ρ̂, Φ̂) unit vectors as:

û± =
1√
2

(x̂± iŷ) =
1√
2

(ρ̂± iΦ̂)e±iΦ. (3)
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Fig. 2. Schematic representation of the coupled cavity struc-
ture formed by two identical, parallel PMCs with a minimum
distance between their surfaces equal to d.

Jl (Kl) is the Bessel function (modified Bessel func-

tion) of the first type of order l, βm =
√
εeff

ω2
m

c2 − ξ2
m

(qm =
√
ξ2
m − εext

ω2
m

c2 ) is the transverse component of the
mode wavevector in the core (cladding) region, ξm is the
longitudinal component of the wavevector, and f(z) is a
normalized function describing the z dependence of the
field, which is given by the usual transfer matrix approach
for a planar MC. N is the normalization factor, which is
given by:

N =

√∫ a

0

dρρJ2
0 (βmρ)+

(
βma

qma

J1(βma)
K1(qma)

)2∫ ∞
a

dρρK2
0 (qlnρ).

(4)

2.2 Coupled cavity structure

The structure, which is schematically represented in Fig-
ure 2, consists of two identical PMCs (denoted with A and
B) of radius a and effective dielectric function εeff : thus the
dielectric function ε of the coupled structure is equal to
εeff in the core regions of A and B; elsewhere ε = εext.

The electric fields of the coupled cavity structure may
be written as the sum of the individual unperturbed fields
produced by A and B. Since the coupled cavity structure
does not have cylindrical symmetry, the azimuthal quan-
tum number l is no more a good quantum number for
its modes, and the fields should be expanded on a ba-
sis consisting of all modes with different l of the isolated
cavities. However, in order to describe the lowest energy
modes, only the fundamental degenerate HE11 and HE−11

ones of the individual cavities can be considered since
these modes are well-separated in energy from all other

modes; thus

Ẽ(r, t) = E(ρ)f(z)e−iωmt

=
∑
p

∑
µ={A,B}

A(µ)
p (t) e(µ)

p f(z)e−iωmt. (5)

Here the superscript (µ) indicates that the quantity refers
to the isolated PMC µ (µ = A,B). The subscript p is a
collective index representing the quantum numbers of the
modes: thus p = (1, 1) or p = (−1, 1). A(µ)

p (t) are complex
coefficients. The z dependence of the field is given by f(z)
and is the same both in the isolated cavity and in the
coupled structure.

In order for Ẽ to be an eigenmode of the coupled
cavity structure, Ẽ should satisfy the wave equation:

∇2 Ẽ =
ε

c2
∂2 Ẽ
∂t2

· (6)

Inserting expansion (5) in (6) the following relation is ob-
tained: ∑

p

∑
µ={A,B}

A(µ)
p (t)Ô(ε) e(µ)

p =

ε

c2

∑
p

∑
µ={A,B}

(
∂2A

(µ)
p

∂t2
− 2iωm

∂A
(µ)
p

∂t

)
e(µ)
p , (7)

with

Ô(ε) = ∇2
T + ε

ω2
m

c2
− ξ2

m, (8)

∇2
T being the transverse Laplacian operator.

When considering the operator Ô(ε) acting on the un-
perturbed field e(µ)

p , it is convenient to write ε in a form
which emphasizes that PMC ν acts as a perturbing source
on PMC µ if ν 6= µ, i.e. ε = ε(µ) + (ε − ε(µ)). Here ε(µ)

denotes the dielectric function of the isolated PMC µ:
thus ε(µ) = εeff in the core region of cavity µ; elsewhere
ε(µ) = εext. Taking the scalar product in (7) with e(µ̄)?

p̄

and integrating in the plane a system of four first-order
linear differential equations in the expansion coefficients
A

(µ)
p is finally obtained:

dA(µ)
p

dt
= iMA(µ)

p + iκA(ν)
p (t) (ν 6= µ), (9)

with

M =
ωm
2ε

∫ ∞
−∞

dx
∫ ∞
−∞

dy(ε− ε(µ))| e(µ)
p |2, (10)

κ =
ωm
2ε

∫ ∞
−∞

dx
∫ ∞
−∞

dy(ε− ε(ν)) e(µ)?
p · e(ν)

p . (11)

(9) has been derived under the assumption of slow time

variation of the coefficients, i.e. |d
2A(µ)

p

dt2 | � |ωm
dA(µ)

p

dt |.
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Note that the formalism developed here has strong analo-
gies with the tight-binding approach in solid state physics,
with M and κ representing the crystal field and the hop-
ping term respectively.

Since the dielectric perturbation (ε−ε(µ)) couples only
coefficients with the same quantum numbers, we can fix
the index p, thus reducing the original system of four equa-
tions to only two coupled equations. Writing A(µ)

p as

A(µ)
p (t) = v(µ)

p eiΩt (12)

with v
(µ)
p independent of time, the original differential

problem is transformed into a standard algebraic one. The
condition for the system to admit nontrivial solutions be-
comes: (

Ω −M −κ
−κ Ω −M

)(
v

(A)
p

v
(B)
p

)
=
(

0
0

)
(13)

The fundamental modes of the coupled cavity structure
have thus energies ω± = ω̃m ± κ (ω̃m = ωm −M) and an
electric field profile proportional to

Ẽ
(±)

p (r, t) ∝ [ e(A)
p (r, t)± e(B)

p (r, t)]f(z)e−iω̃mte±iκt.

(14)

3 Results and discussion

Coupling between two parallel PMCs arises since A pro-
duces a field with an amplitude which -although small-
is different from zero in the region occupied by B, and
vice versa. The coupling removes the degeneracy between
the fundamental eigenfrequencies of the individual cavi-
ties, and yields two doubly degenerate eigenmodes for the
coupled structure with an energy separation∆ = 2κ. Since
the splitting depends on the strength of the interaction be-
tween the fields of the individual cavities, ∆ can be varied
simply by modifying the coupling between PMCs A and B.

The dielectric confinement of the cavity modes is re-
lated to the refractive index contrast at the lateral side-
walls. In [3,5,6] the PMCs have been fabricated by etch-
ing an epitaxially grown planar GaAs MC sample with
GaAs/AlAs Bragg reflectors. The large refractive index
contrast between GaAs and air yields e.m. waves which are
very well-confined in the core region, as required in order
to study phenomena such as the enhanced spontaneous
emission rate of an internal light emitter, or the strong
coupling regime between a quantum-well exciton and the
cavity modes. In this work we are interested in the cou-
pling between two parallel PMCs, which is increased on
reducing the dielectric contrast since this process yields a
larger penetration of the cavity modes in the external re-
gion. A particular favorable condition could be achieved,
for example, by embedding two GaAs PMCs in a AlAs
layer: total internal reflection takes still place at the lateral
sidewalls, since AlAs has a smaller refractive index than
GaAs; however the dielectric contrast is very small, thus

allowing for an appreciable leakage of the cavity modes in
the external medium.

Figure 3a shows the energy splitting ∆ as a function of
the refractive index of the external medium next =

√
εext

for PMCs with radii a = 300 nm and a minimum distance
between their surfaces (see Fig. 2) d = 100 nm (continu-
ous line; left vertical scale) and d = 300 nm (dotted line;
right vertical scale). Parameters have been chosen in order
to describe the cavities employed by Gerard [3], and are
the same as those of reference [10]; they correspond to a
cavity with an effective length Leff = 1096.13 nm and an
effective refractive index neff = 3.24. It is apparent that
the energy splitting is strongly enhanced on decreasing the
dielectric contrast: at d = 100 nm, for example, it varies
between ∆ = 0.92 meV for next = 1 and ∆ = 6.45 meV for
next = 2.9.

In Figure 3b the energy splitting is studied as a func-
tion of the distance d between the surfaces of A and B; we
assume that the radius of the cavities is a = 300 nm and
that the external medium has a refractive index next = 1
(continuous line; left vertical scale) and next = 2.9 (dot-
ted line; right vertical scale). The exponential decay of ∆
with increasing d can be traced back to the exponential
behavior of the field of the isolated cavity in the external
medium (Eq. (2)): namely the radial dependence of the
fields for large values of the argument may be approxi-
mated as:

K0(qmρ) ≈ (
π

2qmρ
)1/2e−qmρ. (15)

Although ∆ is obviously much larger for next = 2.9, the
energy separation is appreciable also for next = 1 if d <
200 nm; the possibility of resolving the two frequencies
of the coupled structure in an optical experiment relies
on the ability of fabricating PMCs with very high quality
factors.

The last figure represents the energy splitting as a
function of the radius a when the distance between the sur-
faces of A and B is d = 100 nm and the external medium
has an index of refraction next = 1 (continuous line; left
vertical scale) and next = 2.9 (dotted line; right vertical
scale). Comparison between Figures 3b and 3c shows that
the splitting between the eigenmodes decreases at a faster
rate if the separation between the centers of A and B is
increased by keeping the radius a fixed and increasing the
distance d between the surfaces, with respect to the case
in which d is kept constant and a is increased. This is due
to the fact that in the latter case the smaller amplitude
of the field produced by one cavity in the region occupied
by the second one with increasing the separation between
their centers is partially compensated by the larger area
in which the fields overlap.

In summary, the coupled modes of two identical cylin-
drical MCs have been studied in the present work. The
overlap between the e.m. field produced by one cavity in
the region occupied by the second one has been shown
to remove the degeneracy between the modes of the iso-
lated cavities. The splitting of the modes of the coupled
structure depends on the strength of the interaction be-
tween the two cavities, which may be varied by changing
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Fig. 3. Energy splitting between the coupled modes (a) as a
function of the refractive index of the external medium. The
two cavities have radii a = 300 nm and a minimum distance
between their surfaces d = 100 nm (continuous line; left ver-
tical scale) and d = 300 nm (dotted line; right vertical scale);
(b) as a function of the minimum distance d between A and
B. The two cavities have radii a = 300 nm and are surrounded
by an external medium with refractive index next = 1 (contin-
uous line; left vertical scale) and next = 2.9 (dotted line; right
vertical scale); (c) as a function of the radius a. The minimum
distance between the surfaces of A and B is d = 100 nm; the
external medium has a refractive index next = 1 (continuous
line; left vertical scale) and next = 2.9 (dotted line; right verti-
cal scale). Other parameters describing the structure are given
in the text.

their radius and distance. The splitting, which is typically
of the order of a few meV, is predicted to be experimen-
tally detectable with state-of-the-art pillar MCs (which
can now attain quality factors as large as ∼ 2 000 for radii
a ∼ 0.5µm). The possibly of observing the phenomenon
rests however heavily on the ability of fabricating cavities
with approximately the same radius. In order to overcome
this technological difficulty, one can take advantage of the
larger splitting which would be obtained on decreasing the
refractive index contrast between the core and the external
medium. This task is an exciting technological challenge,
which would result in the demonstration of fundamental
coherent phenomena in MCs, as well in interesting prac-
tical implementations.
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